Identification of Similar Looking Bulk Split Grams using GLCM and CGLCM Texture Features

نویسندگان

  • Asha Gowda Karegowda
  • D. Ramesh
  • Basavaraj S. Anami
  • Vishwanath C burkpalli
  • Neelamma K. Patil
  • Ravi M. Yadahalli
  • Jagadeesh Pujari
  • Virendra S. Malemath
چکیده

Content based image retrieval (CBIR) is an automated way to retrieve images based on the visual content or image features itself. Visual inspection of food type is tiresome and time consuming task. This paper presents the retrieval of similar looking bulk split gram images using Grey Level Co-occurrence Matrix (GLCM) and Color Grey Level Co-occurrence Matrix (CGLCM) texture features. Texture feature matching procedure is based on three distance measures namely, Euclidean distance, Canberra distance and City block distance. The performance of a retrieved image is measured in terms of Precision. Experimental results show that the CGLCM provides better retrieving result than GLCM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis

The long-time historical evolution and recent rapid development of Beijing, China, present before us a unique urban structure. A 10-metre spatial resolution SPOT panchromatic image of Beijing has been studied to capture the spatial patterns of the city. Supervised image classifications were performed using statistical and structural texture features produced from the image. Textural features, i...

متن کامل

Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features

Abstract— Dental radiographs are essential in diagnosing the pathology of the jaw. However, similar radiographic appearance of jaw lesions causes difficulties in differentiating cyst from tumor. Therefore, we conducted a development of computer-aided classification system for cyst and tumor lesions in dental panoramic images. The proposed system consists of feature extraction based on texture u...

متن کامل

Ultra Sound Kidney Image Retrieval using Time Efficient One Dimensional GLCM Texture Feature

Ultrasound applications are used for diagnostic applications such as visualizing muscles, tendons, internal organs, to determine its size, structures, any lesions or other abnormalities. This paper concentrates the diagnosis of abnormalities in kidney Images based on retrieving past similar images from kidney Image Database. More and more amount of ultrasound digital images are being captured a...

متن کامل

Feature Fusion Technique for Colour Texture Classification System Based on Gray Level Co-occurrence Matrix

In this study, an efficient feature fusion based technique for the classification of colour texture images in VisTex album is presented. Gray Level Co-occurrence Matrix (GLCM) and its associated texture features contrast, correlation, energy and homogeneity are used in the proposed approach. The proposed GLCM texture features are obtained from the original colour texture as well as the first no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017